Akordi pikkus: põhimõisted

Sisukord:

Akordi pikkus: põhimõisted
Akordi pikkus: põhimõisted
Anonim

Elus on aegu, mil kooliskäimisel omandatud teadmistest on palju kasu. Kuigi minu õpingute ajal tundus see info igav ja tarbetu. Näiteks kuidas saate kasutada teavet akordi pikkuse leidmise kohta? Võib arvata, et täppisteadustega mitteseotud erialade puhul on sellistest teadmistest vähe kasu. Siiski on palju näiteid (alates uusaastakostüümi kujundamisest kuni lennuki keeruka ehituseni), kui geomeetriaülesannete lahendamise oskused tulevad kasuks.

Mõte "akord"

See sõna tähendab Homerose kodumaa keelest tõlkes "nööri". Selle tutvustasid iidse perioodi matemaatikud.

akordi pikkus
akordi pikkus

Akord elementaargeomeetria osas on osa sirgest, mis ühendab mis tahes kõvera (ringi, parabooli või ellipsi) mis tahes kahte punkti. Teisisõnu, see ühendav geomeetriline element asub sirgel, mis ristub antud kõveraga mitmes punktis. Ringjoone puhul jääb kõõlu pikkus selle joonise kahe punkti vahele.

Tasapinna osa, mis on piiratud ringjoont ja selle kaarega lõikuva sirgjoonega, nimetatakse segmendiks. Võite märkida,et keskpunktile lähenedes suureneb akordi pikkus. Ringjoone osa antud sirge kahe lõikepunkti vahel nimetatakse kaareks. Selle mõõt on kesknurk. Selle geomeetrilise kujundi tipp on ringi keskel ja küljed toetuvad kõõlu ja ringi lõikepunktidele.

Atribuudid ja valemid

Ringjoone akordi pikkuse saab arvutada järgmiste tingimusavaldiste abil:

ringi akordi pikkus
ringi akordi pikkus

L=D×Sinβ või L=D×Sin(1/2α), kus β on nurk sissekirjutatud kolmnurga tipus;

D – ringi läbimõõt;

α on kesknurk.

Saate valida selle segmendi mõned omadused, aga ka muud sellega seotud arvud. Need punktid on loetletud allpool:

  • Kõik akordid, mis asuvad keskpunktist samal kaugusel, on võrdse pikkusega ja ka vastupidi.
  • Kõik nurgad, mis on kirjutatud ringi ja põhinevad ühisel lõigul, mis ühendab kahte punkti (samal ajal kui nende tipud on selle elemendi samal küljel), on suuruselt identsed.
  • Suurim akord on läbimõõt.
  • Mis tahes kahe nurga summa, kui need põhinevad antud lõigul, kuid nende tipud asuvad selle suhtes erinevatel külgedel, on 180o.
  • Suur akord – võrreldes sarnase, kuid väiksema elemendiga – asub selle geomeetrilise kujundi keskele lähemal.
  • Kõik nurgad, mis on sisse kirjutatud ja põhinevad läbimõõdul, on 90˚.

Muud arvutused

Akordi otste vahel asuva ringkaare pikkuse leidmiseks võite kasutada Huygensi valemit. Selleks peate tegema järgmised toimingud:

leida kaare pikkus
leida kaare pikkus
  1. Märkige soovitud väärtus p ja seda ringiosa piiravat kõõlut nimetatakse AB.
  2. Leidke lõigu AB keskpunkt ja asetage sellele risti. Võib märkida, et läbi kõõlu keskpunkti tõmmatud ringi läbimõõt moodustab sellega täisnurga. Ka vastupidine on tõsi. Sel juhul tähistame punkti, kus läbimõõt, mis läbib kõõlu keskosa, kontaktis ringiga, tähistame M.
  3. Siis saab segmente AM ja VM nimetada vastav alt kui l ja L.
  4. Kaare pikkust saab arvutada järgmise valemi abil: р≈2l+1/3(2l-L). Võib märkida, et selle avaldise suhteline viga suureneb nurga suurenedes. Seega 60˚ juures on see 0,5% ja 45˚-ga kaare korral väheneb see väärtus 0,02-ni.

Akordi pikkust saab kasutada erinevates valdkondades. Näiteks äärikühenduste arvutamisel ja projekteerimisel, mida kasutatakse laialdaselt inseneritöös. Saate vaadata ka selle väärtuse arvutamist ballistikas, et määrata kuuli kaugus ja nii edasi.

Soovitan: